Download Algebraische Zahlentheorie by Jürgen Neukirch PDF

By Jürgen Neukirch

Die algebraische Zahlentheorie ist eine der traditionsreichsten und gleichzeitig heute besonders aktuellen Grunddisziplinen der Mathematik. In dem vorliegenden Buch wird sie in einem ausf?hrlichen und weitgefa?ten Rahmen abgehandelt, der sowohl die Grundlagen als auch ihre H?hepunkte enth?lt. Die Darstellung f?hrt den Leser in konkreter Weise in das Gebiet ein, l??t sich dabei von modernen Erkenntnissen ?bergeordneter Natur leiten und ist in vielen Teilen neu. Der grundlegende erste Teil ist mit einigen neuen Aspekten versehen, wie etwa einer ausf?hrlichen Theorie der Ordnungen. ?ber die Grundlagen hinaus enth?lt das Buch eine geometrische Neubegr?ndung der Theorie der algebraischen Zahlk?rper durch die Entwicklung einer "Riemann-Roch-Theorie" vom "Arakelovschen Standpunkt", die bis zu einem "Grothendieck-Riemann-Roch-Theorem" f?hrt, ferner lokale und globale Klassenk?rpertheorie und schlie?lich eine Darstellung der Theorie der Theta- und L-Reihen, die die klassischen Arbeiten von Hecke in eine fa?liche shape setzt.

Das Buch wendet sich an Studenten nach dem Vordiplom bzw. Bachelor. Dar?ber hinaus ist es dem Forscher als weiterweisendes Handbuch unentbehrlich.

Show description

Read or Download Algebraische Zahlentheorie PDF

Similar number theory books

Multiplicative Number Theory I: Classical Theory (Cambridge Studies in Advanced Mathematics)

Major numbers are the multiplicative construction blocks of average numbers. knowing their total impression and particularly their distribution offers upward thrust to important questions in arithmetic and physics. particularly, their finer distribution is heavily hooked up with the Riemann speculation, crucial unsolved challenge within the mathematical global.

p-adic numbers: An introduction

From the stories: "This is a well-written advent to the realm of p-adic numbers. The reader is led into the wealthy constitution of the fields Qp and Cp in a stunning stability among analytic and algebraic features. the general end is easy: a very great demeanour to introduce the uninitiated to the topic.

Problems in Algebraic Number Theory

It is a very precious ebook for somebody learning quantity idea. it truly is in particular beneficial for amatuer mathematicians studying all alone. This one is equal to the older variation with extra tricks and extra exact rationalization. yet would it BE nice to depart a bit room for the readers to imagine on their lonesome?

Applications of Curves over Finite Fields: 1997 Ams-Ims-Siam Joint Summer Research Conference on Applications of Curves over Finite Fields, July ... Seattle

This quantity offers the result of the AMS-IMS-SIAM Joint summer season learn convention held on the collage of Washington (Seattle). The talks have been dedicated to a number of features of the idea of algebraic curves over finite fields and its a variety of purposes. the 3 easy subject matters are the next: Curves with many rational issues.

Additional info for Algebraische Zahlentheorie

Sample text

This doesn’t work for ℘. However, the “exponential” relation x = ℘(z) can be locally inverted to a “logarithmic” relation z = L(x). )(d/dx)t L at x0 = ℘(z0 ) do have heights growing only like C t . The reason is that the x integral ∞ dx/ 4x3 − g2 x − g3 becomes, after the substitution x = ℘(z), 32 David Masser just z; so it is none other than L. The algebraic function in the integrand can be expanded about x0 and its Taylor coefficients satisfy Eisenstein’s Theorem on growth. The above αt are the coefficients in the integral and so have nearly the same growth.

In the literature so far these have been proved with the Faltings height only when u is a period. In the original definition of abelian variety this means that exp u is the zero of A, and in the abstract definition this means that u is in Ω. The estimate involves the degree D of a number field of definition of A, as well as the distance function dist(u, v) = R(u − v, u − v) coming from the Riemann form. , due to W¨ ustholz and myself [48] in 1993. We did not prove that C(n) is effective but this point has since been settled using the approach of Bost in his 1995 S´eminaire Bourbaki talk [16].

But if A = E × E then there are “diagonal” examples like the set B of all (π, π) as π runs through E. 2) for (π1 , . . , πn ) in A defines a group subvariety B, and if E has no complex multiplication then every connected such B is defined by a finite collection of such equations, almost (but not quite) as in Lecture 2 with xb11 · · · xbnn = 1. But if E has complex multiplication then one has to allow coefficients in the associated field k or more precisely in a suitable order. Returning to arbitrary A, if B is connected then it too is an abelian variety (“abelian subvariety”) and so has a tangent space T B.

Download PDF sample

Rated 5.00 of 5 – based on 37 votes